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Abstract—Holding the steering wheel with both hands is 

essential for safe driving. This paper proposes a novel 

approach using only one off-the-shelf smartwatch to 

determine whether the driver's is holding the steering wheel 

with both hands. Two classification models, namely, the 

individual and universal models, are proposed. An 

individual model focuses on a particular driver, while the 

universal model is applicable to all drivers. Both models 

extract vibration features from the watch's accelerometer 

signals using the Hilbert–Huang transform and classify the 

signal pattern by using support vector machines with a 

radius-basis function kernel. Data samples were collected 

from 35 drivers. The universal model can achieve an accuracy of 98.51% for the hand on which a smartwatch is worn 

and 90.29% for the hand on which the smartwatch is not worn; the individual model achieves a higher accuracy of 

99.21% for the hand on which a smartwatch is worn and 97.18% for the hand on which the smartwatch is not worn. 

Index Terms—Hilbert–Huang transform, safe driving, steering-wheel handling detection 

 

I.  INTRODUCTION 

HE National Highway Traffic Safety Administration 

(NTHSA) of the United States advises that a driver should 

operate the steering wheel with both hands while driving to 

ensure safety. The optimal driving practices to maximize the 

driver's control of the vehicle and thus reduce the risk of 

potential accidents involve balancing the steering wheel to 

avoid sudden movements and minimizing steering wheel 

reversals [1]. With two hands on the wheel, drivers can exercise 

far more control in maneuvering the vehicle in case of a sudden 

emergency, high speed, or a hard road. However, the driver may 

not always be aware of the importance of holding the steering 

wheel for safe driving. Several researches work on safe driving 

aimed to detect whether the driver’s hands are on/off the 

steering wheel [2, 3]. 

Several car-manufacturing companies (e.g., Tesla, 

Volkswagen, and BMW) manufacture high-end vehicles with 
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pressure sensors on the steering wheel to address this issue. 

Such systems can notify the driver if they do not hold the 

steering wheel with both hands. However, such technology may 

require years to be applied to lower-priced cars. Additionally, 

the ratio of the number of the high-end vehicles to the number 

of the low-end vehicles is 1.56 million to 77.5 million; in other 

words, high-end vehicles make up only 0.02% of the total 

number of vehicles [4]. Therefore, an alternative technique to 

improve the driver's safety applicable for both high-end (new) 

or low-end (old) cars is required. 

Several studies on the recognition of driving behaviors 

based on different sensing technologies such as cameras [5–9], 

pressure distribution sensors [10], and pressure sensors [11], 

have been developed. According to Statista statistic, published 

in 2022, smartwatch unit sales worldwide in 2018–2022 have 

increased drastically until 36%. The emergence of the 

smartwatch and its popularity in the market can be attributed to 
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its powerful function and ease of use. Forbes 2022 states that 

the sales of worldwide wearables will double by 2022. The 

smartwatch contains many different sensors and offers 

flexibility and extendibility to users, allowing them to install 

many apps on it. The current applications include healthcare 

monitoring, day tracking, and notification. Given all these 

functionalities and the tremendous market growth, it is clear that 

the use of smartwatches can lead to potential improvement in 

other domains, such as drivers' safety. 

Bi et al. utilized smartwatches and a smartphone in a 

promising approach called SafeWatch that can warn a driver if 

any off-steering-wheel action is recognized [12]. Another 

technology called SafeDrive recognizes various hand 

movements via an accelerometer and a gyroscope [13]. 

However, while SafeWatch requires the use of one smartwatch 

on each hand, SafeDrive requires just one smartwatch with the 

limitation that the device will have no information regarding the 

behavior and position of the hand on which a smartwatch is not 

worn. 

This paper proposes SmartDetect, a system that uses only 

one off-the-shelf smartwatch to recognize whether both hands 

are on the steering wheel. This research found that the vibration 

patterns of one hand and both hands on the steering wheel as 

detected by the accelerometer in the smartwatch are different. 

This is probably because there are two main vibration signal 

sources, namely, the car engine and hand movement. The 

signals from each of these sources will weaken or strengthen 

depending on the position of the hand on the steering wheel. 

The goal of the research is to capture these signal differences to 

determine whether both hands are on the steering wheel using 

one smartwatch. This research proposes two modeling 

approaches: universal and individual models. 

Further, the signals can be classified into three classes: the 

left and right hands are on the steering wheel (L1R1); the left 

hand is on the steering wheel, while the right hand is not on the 

steering wheel (L1R0); the left hand is not on the steering wheel, 

while the right hand is on it (L0R1). The Hilbert–Huang 

Transform (HHT) [14] is applied to produce the Hilbert 

spectrum of the accelerometer signal for feature extraction. 

Next, support vector machines (SVMs) are employed to build 

the classification models on the Hilbert spectrum for 

distinguishing the three classes. The advantage of SVM is that 

it offers a high classification accuracy since they enable the 

combination with other pattern classification methods to reach 

distinct objectives taken in the classification, besides a high 

accuracy. In other words, it allows the incorporation of tools 

that transform the biometric signal input data to the SVM and 

solve the same [15]. In this research, an HHT transformation is 

applied to the input signal. 

Several experiments were conducted to evaluate the proposed 

methods. The experimental result shows that the individual 

model can provide 97% average accuracy for L1R1 vs. L1R0 

and 99.48% average accuracy for L1R1 vs L0R1. Therefore, 

SmartDetect contributes to a novel approach that can recognize 

steering-wheel handling detection for both hands using only one 

smartwatch. 

The remainder of this paper is organized as follows. Section 

II provides a background of the research on steering-wheel 

handling detection. Section III describes the proposed universal 

and individual models. Section IV presents the experimental 

results and discussion. Finally, Section V provides the 

conclusions and prospects of this research. 

II. RELATED WORK AND CHALLENGES 

Technological advances to enhance driver's safety has 

always been an active research topic [16, 17]. Several works 

primarily focused on detecting the hand position [2, 3, 12, 13, 

18]. The latest approach presented by Bi et al. explored the 

possibility of relying on the raw signals of a smartwatch [12]. 

They utilized smartwatches, smartphones, and cameras to 

capture information on driving behavior. their system detects 

whether a hand is holding the steering wheel based on several 

features from the motion data, such as the posture of the driver's 

forearm, vibration of the vehicle's body, and vehicle turning. An 

accuracy of up to 91% was achieved for both precision and 

recall. The only limitation of their approach is that it can detect 

the movement of only that hand on which the smartwatch is 

worn. To recognize the movements for both hands, the driver 

must wear smartwatches on both hands. Safewatch applied the 

vertical component of the vibration signal and did not extract 

more critical information from the signal. In this study, we 

applied the HHT to obtain better features.  

Furthermore, Safewatch has more stages than smartDetect. 

First, safeWatch detected the hand movement from the sensor 

sampling output. Each rest and moving detection result has 

several distinct processes to detect if the hand is on or off the 

wheel. Whereas SmartDetect simplifies the process into two 

main stages: feature extraction and classification. The latest 

similar research [18] proposed deep learning to predict the 

driver’s hands on/off. However, this research utilizes a less 

flexible, embedded capacitive sensor than a smartwatch. 

The challenges of SmartDetect for steering-wheel handling 

detection are as follows: (1) It must be convenient, familiar, and 

feasible, and it should not interfere with driving to improve 

driver safety; for example, the driver should have to use one 

smartwatch instead of two. (2) The proposed system should be 

applicable for various drivers, cars, and environments. (3) It 

must be provided good performance, especially for the hand that 

is not wearing a smartwatch. 

III. SYSTEM DESIGN 

A. System Overview 

SmartDetect is a wearable sensing system for improving 

driver safety. It uses one smartwatch to detect the positions of 

both hands to determine whether they are on/off the steering 

wheel. For this purpose, SmartDetect extracts the vibration 

signal using the three-axes accelerometer of a smartwatch, 

which is worn on one hand of the driver (the left hand in this 

research) and which is paired with a smartphone placed in the 

vehicle. The application scenario is that the smartwatch acts as 

a sensor for capturing the vibration signals from the car and 

driver, and then it sends the captured signals using bluethooth 

connection to other device as a server for analysis. 
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Fig. 1. SmartDetect architecture. 

 

SmartDetect has four parts, as shown in Fig. 1. The first part is 

preprocessing, which involves clock synchronization, median 

filtering, and signal partitioning. The second part is feature 

extraction that applies empirical mode decomposition (EMD) 

and Hilbert spectral analysis (HSA) [14] to extract the HHT 

features. In the third part, the classification model is learned by 

SVMs, and testing is conducted in the last part. 

B. Signals and Data Samples 

The signal was collected from the X-, Y-, and Z-axis 

accelerometer sensors of the smartwatch in two environments: 

stationary cars and moving cars. As suggested by [3] and 

defined by the American Society of Safety Engineers, unsafe 

driving actions will last for at least 2.5 s. Since the sampling rate 

of the accelerometer on smartwatch is 50 Hz, original signals 

are then obtained for every 125 data points. Therefore, for each 

action, the sample for each of the three-axis accelerometers 

comprises 125 data points. 

 
Fig. 2. L1R1 (both hands are on the steering wheel) and L1R0 (the left 
hand is on the steering wheel, while the right hand is not on the steering 
wheel): (a) raw signals on 3-axes and (b) the Hilbert spectrum of x the 
axis. 
 

Based on the signal analysis performed, it concluded that 

driver behavior signals are nonlinear and nonstationary. 

According to [19], HHT is the most suitable signal 

transformation method, as shown in Table I. The signals 

analysis is explained in fig. 2 and fig. 3. Another research [20] 

showed that the HHT method is more adaptive than Wavelet 

Transform (WT) analysis in analyzing non-stationary 

magnetotelluric signals and will have a wide application on 

signal processing. 

Fig. 2(a) shows examples of the raw signals of L1R1 and 

L1R0. According to the mean value of each partitioned sample 

of the raw signal within a short period, it is evident that the mean 

value tends to vary with time. This type of signal can be 

considered a nonstationary signal, and the HHT can be suitable 

for processing this type of signal. Fig. 2(b) shows the Hilbert 

spectrum. Fig. 2 demonstrates that although the scenarios with 

one hand on the wheel and both hands on the wheel have 

different patterns in both raw signals and Hilbert spectra, it is 

much harder to distinguish the patterns of the raw signals, 

whereas the patterns in the Hilbert spectra are drastically 

different.  

 
Fig. 3. Feature visualization for sample L1R1 versus L1R0 in three-
dimensional space. 

 

Fig. 3 shows the distribution of the three-axis accelerometer 

signal from the L1R1 (safe action) and L1R0 (unsafe action) 

classes in the first three components obtained by principal 

component analysis (PCA). It can be seen that the sample of 

L1R1 and L1R0 may be not linearly separable, and nonlinear 

classifiers can be employed. 
 

TABLE I 
SIGNAL PROCESSING METHOD COMPARISON 

         

Criteria Fourier  Wavelet HHT 

Basis A priori 

 

A priori 

A 

posterior

i 
adaptive 

Nonlinearity No  No Yes 

Nonstationary No  Yes Yes 

Feature extraction No 

 Discrete: 

no; 

continuous

: yes 

yes 

 
 

C. Preprocessing 

The preprocessing step is similar to that in [21]. First, the 
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clock of the smartwatch and smartphone is synchronized for 

partitioning the raw signals. Second, the median filter is applied 

to the raw signal for noise removal. A median filter was applied 

since it is nonlinear and good to remove noise and extreme 

values [22, 23]. 

 Third, the raw signal is partitioned into segments as 

described in Section III.B. Fig. 4 describes the output obtained 

after partitioning; this output is the preprocessing result. 

 

 
Fig. 4. Data preprocessing result. 
 

D. Feature Extraction 

Feature extraction aims at extracting effective features for 

distinguishing safe and unsafe actions. In this stage, the HHT 

[12, 14], which is often applied to analyze nonstationary and 

nonlinear data, is used. The feature-extraction process is shown 

in Fig. 5. It involves two main steps: EMD and HSA that also 

called HHT Spectrum. 

 

 
Fig. 5. Feature extraction process. 
 

EMD decomposes the input signal into several intrinsic 

mode functions (IMFs) and a residue/trend, which have well-

behaved Hilbert transforms. EMD is based on the direct 

extraction of the energy associated with various intrinsic time 

scales, the most critical parameters of the system. The essence 

of the method is to empirically identify the intrinsic oscillatory 

modes by their characteristic time scales in the data and then 

decompose the data accordingly. The decomposition is 

executed with several steps: (1) Identify all the local extrema 

(maximum and minimum); (2) Connect all the local maximum 

and minimum by a cubic spline line as the upper and lower 

envelope. The time lapse between the maximum and minimum 

extrema is defined as a characteristic time scale; (3) Obtain the 

mean value from the envelope of minimum and maximum value, 

then decrease the value of signal by the mean value of the 

envelope, and (4) Repeat steps 1-3. If the data were devoid of 

extrema but contained only inflection points, then it can be 

differentiated once or more to reveal the extrema, in which the 

data are decomposed into several intrinsic mode function 

components. The final result can be obtained by integration(s) 

of the components, called IMFs [14]. 

Then, the Hilbert transform is applied to the IMFs to obtain 

instantaneous amplitude and frequency data for the IMFs. Such 

an energy–frequency-time representation of data is designated 

as the Hilbert spectrum. The Hilbert transform 𝑦(𝑡) of a real-

valued signal 𝑥(𝑡) is defined as [14]: 

𝑦(𝑡) =
1

𝜋
𝑃 ∫

𝑥(𝑡′)

𝑡−𝑡′

∞

−∞
𝑑𝑡′,   (1) 

where P denotes the Cauchy principal value. It is a method to 

assign values of certain improper integrals, where a singularity 

on an integral interval is avoided by limiting the integral interval 

to the singularity.  The Hilbert transform is a companion 

function for 𝑥(𝑡) . With 𝑦(𝑡) , 𝑥(𝑡)  can be extended to a 

complex-valued signal 𝑧(𝑡) as 

𝑧(𝑡) = 𝑥(𝑡) + 𝑖𝑦(𝑡) = 𝑎(𝑡)𝑒𝑖𝜃(𝑡)  (2) 
where 𝑎(𝑡) and 𝜃(𝑡) are the instantaneous amplitude and phase 

of 𝑥(𝑡), respectively, and they are defined as shown below: 

𝑎(𝑡) = (𝑥2(𝑡) + 𝑦2(𝑡))1/2, 𝜃(𝑡) = arctan (
𝑦(𝑡)

𝑥(𝑡)
).  (3) 

The instantaneous frequency 𝑓(𝑡) can be obtained by 

𝑓(𝑡) =
𝜌×𝜔(𝑡)

2𝜋
      (4) 

where 𝜌  is the sampling rate, and 𝜔(𝑡) =
𝜕𝜃(𝑡)

𝜕𝑡
 is the 

instantaneous angular frequency of 𝑥(𝑡). 

The Hilbert spectrum of three axes (X-, Y-, Z-) is used as 

the feature. Each axis has 25 HHT spectrum covering 0–25 Hz 

frequency for each axis. Thus, 75 HHT features can be obtained 

by averaging the three Hilbert spectra over time. 

E. Training and Testing Phases 

As mentioned previously, two different modeling 

approaches, namely, the universal and individual models, were 

implemented on SVMs. An SVM is a supervised learning 

algorithm whose objective is to find a hyperplane in the feature 

space with a large separation margin for classifying the data 

points. 

SVMs method classification was utilized according to [24]. 

The paper results suggest that the SVM classifier may perform 

better than Logistic Regression (LR), K-Nearest Neighbor 

(KNN), and Naïve Bayes (NB). Compared to LR, SVMs can 

handle non-linear solutions, whereas logistic regression can 

only handle linear solutions. Moreover, linear SVMs handle 

outliers better, as it derives maximum margin solution. 

Moreover, SVMs take care of outliers better than KNN and 

outperform KNN when there are large features and lesser 

training data. It supports after [25] conclusion that SVMs have 

fast response, less error, and it is suitable for classifying sEMG 

signals compared to NB. The SVM is learned by solving the 

following optimization problem [26]: 
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min
𝐰,𝑏,𝜀

1

2
𝐰𝑇𝐰 + 𝐶 ∑ 𝜀𝑖

𝑙
𝑖=1    (5) 

subject to 

𝑦𝑖(𝐰𝑇𝜙(𝐱𝑖) + 𝑏) ≥ 0 − 𝜀𝑖 ,  𝜀𝑖 ≥ 0 

 (6) 

where 𝐶 ≥ 0 is the penalty parameter to control the tradeoff 

between the margin and the error, and (𝐱𝑖, 𝑦𝑖)  is a training 

instance-label pair with 𝐱𝑖, which is the i-th training vector, and 

𝑦𝑖 ∈ {−1,1}, which is the associated class label. The sample 

vector can be nonlinearly mapped by the function 𝜙  into a 

higher-dimensional feature space. 

As explained in Section III.B, the data distributions of safe 

and unsafe actions are not linearly separable. By the kernel trick, 

the radial basis function (RBF) kernel [26] can be applied. The 

RBF kernel 𝐾(𝐱, 𝒚) is defined as follows: 

𝐾(𝐱, 𝒚) = exp(−𝛾 ‖𝐱 − 𝒚‖2), 𝛾 > 0  (7) 

where 𝛾 is the hyperparameter for the RBF kernel. 

In this research, the best values for the hyperparameters 𝛾 

and 𝐶  were selected by five-fold cross-validation; for each 

cross-validation, 80% of the training sample formed the training 

set, and the other 20% of the training sample formed the 

validation set. The parameter sets for 𝐶  and γ included wide 

ranges of values, usually covering the appropriate ones for 𝐶 

and γ.  

The accuracy of each combination of five-fold cross-

validation is described in the graph in Fig. 6, Fig. 7, and Fig.8. 

Fig. 6  exhibits the stability of the accuracy towards the 

combinations of 𝐶 and γ values in a three-dimensional chart. 

The boxplot chart in Fig.7 shows that the accuracy value is 

stable for each combination of 𝐶 and γ values, with a minimum 

accuracy of 86.49 and a maximum of 100%. For the best C and 

gamma values, the minimum accuracy is 90.40%, and the 

maximum is 100%. Fig. 8 shows the accuracy stability reaching 

100%, where participants achieved 100% accuracy at various 

values of 𝐶 and γ, not only at particular values of 𝐶 and γ. 

According to the accuracy result with respect to 𝐶  and γ 

values, the γ value 2-2 indicates the best classification result up 

to 100%, and the accuracy is constantly high when the 𝐶 values 

are 101, 102, and 103. The best parameter values for C and γ are 

listed in Table II. Moreover, the results shown in Fig.6, Fig. 7, 

and Fig. 8 also indicate the robustness of the proposed method. 

 
Fig. 6. Accuracy with respect to various combination of 𝐶 and γ value.  

 

Fig. 7. Accuracy of participants with respect to various combination of 𝐶 

and γ value.  

 

 
Fig. 8. Participants’ accuracy reached 100% with respect to various 

combination of 𝐶 and γ value. 

 

 
TABLE II 

PARAMETER SET AND THE BEST PARAMETER VALUE 

Parameters Parameter-Value Set  Best Results 

(Classification's 

Accuracy) 

C 
{10-2, 10-1, 100, 101, 102, 

103, 104, 105} 

 
101, 102, 103 

𝛾 {2-6, 2-5, 2-4, 2-2, 2-1, 20, 21}  2-2 

 

The universal model was trained on the dataset of all drivers 

to obtain a single model, whereas the individual model was 

trained on each driver's data, and each driver had his own model. 

A preliminary experiment shows that 70% of the collected 

sample is sufficient for training the model for this application. 

Accordingly, the training set is 70% of the collected sample 

selected by stratified random sampling. The other 30% of the 

collected samples formed the testing set. The average accuracy 

of the model on the testing data by twenty-five times of random 

sampling determined the model's accuracy. 

IV. EVALUATION 

A. Experimental Data 

The data collection involved 35 participants, where all 

participants comprised Master and Ph.D. students of the 

Computer Science Department of NCU; male and female; the 
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ages of the participants were between 22 and 42 years. This 

range is the medium range of the law ages of driver in Taiwan 

[32]. For safety, most participants participated in the experiment 

in a stationary car environment. Three participants, who had a 

driving license, participated in the experiment in a moving car 

environment. The stationary car environment was realized in a 

parked car with the engine running. This environment was used 

for ascertaining data collection safety, while the moving-car 

environment was realized in a reserved parking lot on the 

campus with the university's authorization. The participant 

profile is summarized in Table III. In the data collection process, 

each participant was asked to wear a smartwatch on their left 

wrist and perform three actions: L1R1, L1R0, and L0R1. Each 

participant conducted each action five times; each action lasted 

for 2 min. Therefore, each data set length is 30 minutes. Table 

III also summarizes the collected data set that was used as 

experimental data. 

For the moving environment, the participants did not operate 

the car because of safety concerns. Instead, the participant was 

seated in the passenger seat and performed hand movements on 

a fake steering wheel to mimic the driving activities as another 

individual safely drove the vehicle. In this experiment, we used 

Mitsubishi Savrin as a representative of old cars (which is a 

commonly owned old car) and Toyota Corolla Altis 2017 as the 

new car (a more expensive, newer car) to account for different 

vibration harshness. For data collection, a commercial standard 

smartwatch, Sony Smartwatch 3, paired with Sony Xperia Z 

was used. The sampling rate of the watch is 50 Hz. 

The universal and individual models executed three 

classification scenarios to classify the experiment samples: 

L1R1 vs. L0R1, L0R1 vs. L1R0, and L1R1 vs. L1R0. The 

performance evaluation employed accuracy as a metric. 
 

TABLE III 
DATA COLLECTION SET 

                  

Data collection 
environment 

Participant IDs 
number of 

participants 
data set 

number of 
data set 

Experiments 
related 

data set used data length 
total data 

length 

Stationary (Old Car) 1 - 35 

35 

35 

48 

Exp 2, 3, 4, 5 35 1050 

1830 Stationary (New Car) 26 - 35 10 Exp 6 20 600 

Moving (Old Car) 22 - 25 3 Exp 1 6 180 

B. Experiments and Results 

Six experiments were conducted to prove the claimed 

contribution. The first experiment was aimed to ensure the 

feasibility that the experiment was performed on samples 

collected from the stationary environment instead of the 

samples from the moving environment. The second experiment 

aimed to show that the universal model on the HHT features 

was better than that on the raw signal. The third experiment 

aimed to analyze the reason why the universal model was 

ineffective in distinguishing the samples of L1R1 and L1R0 for 

some participants. The fourth experiment aimed to compare the 

performances of the universal and individual models. The fifth 

experiment analyzed the number of features for the individual 

model. The last experiment was performed to test the individual 

model on old and new cars, which have different vibration 

levels. 

To ensure the robustness of the result, random sampling 

conducted twenty-five times using different subsets of training 

and testing sets each time. 

 
Fig. 9. Comparison of the accuracy of the stationary and moving 
environments. 

 
1) Comparison of stationary and moving environments 

This experiment aimed to ensure that the data from the 

moving environment could be substituted with the sample from 

the stationary environment for performance evaluation. This 

experiment compared the accuracy of the universal model 

applied to the raw signal from the moving and stationary 

environments to see if the environment has a significant affect 

of the accuracy. Data from three participants in the stationary 

and moving environments were used for this experiment. Fig. 9 

shows the comparison result of the accuracies. The complete 

result of 5 times random sampling is shown in Table IV.  

The null hypothesis of this experiment is that the sample 
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data from the stationary or moving environment present a 

similar result. A two-tailed t-test with a confidence level of 95% 

was applied to prove the hypothesis. The result indicates that 

the t-score value is not in the region of rejection of the null 

hypothesis, which means the samples of stationary and moving 

car environments are similar or equal. 

 
TABLE IV 

COMPARISON OF THE ACCURACY OF THE STATIONARY AND MOVING 

ENVIRONMENTS 

       

  STATIONARY MOVING 

L1R1-L1R0 participant 1 87.9 90.86 

 participant 2 86.6 89.07 

 participant 3 88.53 90.77 

L1R1-L0R1 participant 1 96.6 98.78 

 participant 2 97.97 97.95 

 participant 3 97.05 98.88 

L1R0-L0R1 participant 1 97.5 99.08 

 participant 2 96.99 98 

  participant 3 97.75 98.98 

 

More evidences exhibit in Fig. 10. The figure compares the 

distributions of the raw signals of both environments for each 

class: L1R1, L0R1, and L1R0. Blue dot denotes the stationary 

environment, while orange denotes the moving environment. 

The dimension of the raw signal was reduced by PCA. The 

figures indicate that the raw signals on the stationary and 

moving environments exhibit similar distributions. The figures 

also show that the distribution of the signal on the moving 

environment is more stable, while that on the stationary 

environment is more spreading and difficult. The results 

indicate that if the approach is effective for stationary sample 

data, then it is suitable for moving car data; for the rest of the 

experiments, data collected from the stationary car experiment 

can be used. 

 

 
Fig. 10. Analysis of the raw signal pattern, where orange denotes the 
moving environment, and blue denotes the stationary environment. 

 

However, several previous works resume that speed could 

affect the vibration of the vehicle or other moving machines. 

On a hand tractor, velocity strongly affects transmitted 

vibration to the driver's hands [27]. A study of the rail 

conveyor's vibration and noise deduces that the conveyor's 

running speed impacts the vbration and noise [28]. While [29] 

discovered that the vibrations of the steering wheel affected 

when the speed reached 100 km/h. The findings of the 

references denote that the affect of the car's speed on hand 

detection on the steering wheel based on the vibration signal of 

the smartwatch needs to be explored in future work, since this 

experiment utilize limited data (3 participants). 

 

2) Performance evaluation of different features using the 

universal model 

In this experiment, data of 35 participants from the stationary 

environment using the old car were used. This experiment 

aimed to prove that HHT feature extraction results perform 

better than the raw signals. The HHT experiment design was as 

follows: 

a) The compared features were the raw signal, 10 HHT 

features, and 25 HHT features. 

b) The universal model and SVMs-RBF classifier were 

employed. The reasons for using the RBF kernel instead of 

the linear kernel are explained “III.E. Training and Testing 

Phase.” 

c) Random sampling for training and testing data was 

performed twenty-five times to ensure robustness. 

These three features were compared. The comparison is 

shown in Fig. 11. In the figure, the universal model using the 

HHT extraction feature exhibited a drastic improvement in 

accuracy. This finding implies that HHT with 25 features gives 

the best result for all features. Nevertheless, while excellent 

accuracy is achieved for L1R1–L0R1 and L0R1–L1R0, this is 

not the case for L1R1–L1R0, representing the hand without a 

smartwatch (i.e., the right hand in this case). Hence, L1R1–

L1R0 accuracy should be improved. 

 
3) Data distribution analysis of the user 

Since experiment 2 did not yield good results for the hand 

without a smartwatch (L1R0), the study should analyze the data 

distribution of the user. The purpose of this experiment was to 

compare the characteristics of experiment samples to check 

whether L1R1 and L1R0 have different patterns. PCA was 

performed for data distribution analysis. The experimental 

result provides insight into why the classification result from 

L1R1 against L1R0 cannot be improved, as shown in Fig. 12. 

 

 
Fig. 11. Comparison of the average accuracies of three different features. 

 

The data used in this analysis comprised the data of 35 

participants of the stationary environment experiment using the 

old car. First, the sample data were split for each driver. Then, 
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PCA reduction was performed for all the drivers, and the mean 

of the PCA reduction result was calculated. Finally, two results 

were obtained for each driver—one was the mean value of 

L1R1, and the other was the mean value of L1R0. 

 

 
Fig. 12. Distributions analysis of L1R1 and L1R0 for each participant. 

 

Fig.12 shows that some data points of L1R1 overlap with 

the L1R0 data from the other drivers; the other drivers have 

reverse data between L1R1 and L1R0. Hence, the classifier 

faces difficulties in distinguishing L1R1 and L1R0 for some 

data points. The results indicate that L1R1 and L1R0 mean data 

for every driver are at different levels. Because of the existence 

of overlap and reverse data between L1R1 and L1R0 of the 

different drivers, the individual model is a proper way to 

distinguish L1R1 and L1R0. 
 

4) Performance evaluation of the individual model 

This experiment aims to evaluate the performance of the 

proposed individual models and whether they can provide 

better accuracy on L1R1–L1R0 than the universal model. This 

experiment was designed with the individual model as 

explained in the section III. System Design using 25 HHT 

features and the SVMs-RBF classifier, and the experiment was 

run twenty-five times with random sampling. The data used in 

this experiment comprised the data of 35 participants in the 

stationary environment experiment using the old car. The 

performance was analyzed using the receiver operating 

characteristic (ROC) curve, as shown in Fig. 13. It was applied 

because the observations were balanced between each class, 

both L1R1 and L1R0. The ROC curve summarizes the tradeoff 

between the true-positive and false-positive rates for a 

predictive model using different probability thresholds. It is 

ideal if the area under the curve (AUC) approaches 1 (meaning 

the curve is far away from the cross line, or the yellow dotted 

line), and it performs poorly if the AUC is close to 0.5 (meaning 

the curve approaches the cross line).   

Fig. 13 shows that the individual model provides better 

results than the universal model on the hand which not worn 

smartwatch. An ROC curve closer to (0,1) is desirable because 

how good a model is at predicting the positive class when the 

actual outcome is positive is remarkably higher than how often 

a positive class is predicted when the actual outcome is negative. 

The AUC of the individual model is 0.993, which is better than 

the AUC of the universal model (0.962). This result indicates 

that a classifier's probability of ranking a randomly chosen 

positive instance is higher for the individual model than for the 

universal. 

 

 
Fig. 13. Receiver operating characteristics (ROCs) for the individual and 
universal models. 

 

Fig. 14 shows the accuracy for each user, and it shows that 

there is no significant difference among the participants. The 

average accuracy of the individual model is 97.18%, with a 

standard deviation of 2.89, while the average accuracy of the 

universal model is 90.29% with a standard deviation of 5.05. A 

confusion matrix consisting the rate of true positive, false 

positive, false negative, and true negative is provided in Table 

V, where the positive is L1R1, and the negative is L1R0. The 

performance measures indicate that the individual model is 

more accurate than the universal model. 

 

 
Fig. 14. Accuracy comparison of the individual and universal models of 
the hand not worn smartwatch 
 

The comparison of individual and universal models' 

accuracy for the hand-worn smartwatch is observed by L1R1-

L0R1 classification. The result is shown in Fig. 15. The result 

is quite similar because the difference between the hand-worn 

smartwatch when it is on or off the wheel is significant. 

Therefore, the result of the universal model is good, and the 

individual model improves a few results. However, the 

individual model solved the challenge of distinguishing the 

position of the hand-not-worn smartwatch, according to the 

results shown in Fig. 13 and Fig. 14. 
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Fig. 15. Accuracy comparison of the individual and universal models of 
the hand worn smartwatch 

  
TABLE V 

CONFUSION MATRIX 

Prediction 
Actual (Individual) Actual (Universal) 

Positive Negative Positive Negative 

Positive 96.77% 2.43% 89.83% 9.25% 

Negative 3.23% 97.57% 10.17% 90.75%  

 

In the experiments with the individual model, the minimum 

count of data to be processed were four—two from L1R1 and 

two from L1R0, and the minimum duration was 10 s. However, 

the minimum data size and length result in poor model 

performance. We obtained better performances with longer data 

lengths. The accuracy was greater than 90% for data samples of 

length 50 s (20 data), 92% for 60 s, 93.3% for 80 s, 94.92% for 

130 s, and approximately 97% for 600 s. Fig. 16 shows the 

accuracy plotted as a function of time; the confidence interval 

is 97.18 ± 1.89, with a confidence level of 95% for 600–750 s 

of data collection time. 
 

 
Fig. 16. Accuracy of the individual model with respect to the signal length. 

 

When applied the HHT on partitioned signals, a spectral 

leakage possibly occurs, though the good result of this 

experiment shows that spectral leakage is not severe for this 

application. However, overcoming the spectral leakage will be 

one of the future works. For example, a modified HHT [30] can 

be adopted. 

 

5) Dominant feature analysis 

In this experiment, the dominant feature and the number of 

features were analyzed for the individual model. The results 

provide an insight into the affect of the number of features on 

system accuracy. The dominant features were analyzed by two 

strategies: 

(i) Feature ranking—the feature importance was determined 

from the absolute value of the feature weight given by the 

linear SVM [31]. 

(ii) PCA. 

The experimental results are summarized in Table VI. As 

seen from the table, the system accuracy can be maintained by 

retaining approximately two-thirds of the important features or 

principal components. 

TABLE VI 
ANALYSIS OF DOMINANT FEATURES 

Feature 
Accuracy (individual model) 

Min Max Average SD 

All 75 features 90.58 100.00 97.18 2.89 

55 important features by 

feature ranking 92.57 100.00 97.36 2.32 
The first 50 principal 

components 90.05 99.90 97.09 2.86 

 

6) Comparison of old-car and new-car environments 

This experiment was designed to check whether the 

individual model is effective for both old and new cars to allay 

the suspicion that different vibrations from different vehicles 

will affect the accuracy. This experiment was conducted by 

using an individual model with 10 participants who drove both 

old and new cars in a stationary environment. In all, 75 HHT 

features were used, and the classifier was SVMs-RBF. The 

process is the same as that for the individual model for each 

driver on an old or new car. For the 10 participants, the od-car 

models and new-car models were labeled MO1–MO10 and 

MN1–MN10, respectively. 

 

  
Fig. 17. Individual model performances for new and old cars 
 

The experimental models achieved an accuracy average of 

97.05 with a standard deviation of 3.49 for the new car and an 

average of 96.03 with a standard deviation of 4.38 for the old 

car. The result is shown in Fig. 17. This result provides 

convincing evidence that the pattern is similar for most 

participants; the model performance of only participant number 
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9 was slightly different. This result is reasonable because even 

for the same type of car, the accuracy may differ slightly with 

the participants because the data set were obtained randomly 

from the behavior. In addition, the vibration signal patterns 

were similar even for different amplitudes. This experiment 

proved that the suspicion that vibration will affect the 

performance is unwarranted and that the individual model is 

robust and applicable for diverse situations as it can handle 

vibrations of different amplitudes. 

V. CONCLUSION 

Universal and individual models with HHT feature extraction 

and SVMs-RBF are presented as a novel approach that employs 

only one smartwatch to detect steering-wheel handling for both 

hands. The main challenge is to detect the behavior of the hand 

on which the smartwatch is not worn. The individual model can 

solve this problem well, and it achieves an AUC of 0.993 for the 

ROC curve and an average accuracy of 97.36%. This approach 

requires new data collection to train a new model for each new 

user and around 60–600 s of data for achieving an accuracy 

between 91% and 97.18%. The universal model is more feasible 

for practical use because it does not need to learn the signal 

patterns of each new user, but it provides a limited accuracy of 

90.29% with an AUC of 0.962.  

The experiments and result analysis prove that although 

stationary data were used to avoid dangerous situations involving 

data collection in a moving-car environment, the proposed 

approach is effective for moving-car environments. Nevertheless, 

the data for this experiment is limited. A deep study of vibration 

signal in stationary and some speed degrees of moving car will 

be valuable. 

The proposed approach is generalizable for many drivers as 

the research involved 35 participants and provided strong model 

performance. The participants ages range did not cover the ages 

18-21 and 43-65, as stated in the law ages of driver in Taiwan[32]. 

It will be more meaningful to cover the ages of possible driver on 

the future work. 

 Further, the approach is suitable for high-end cars (i.e., new 

cars) as well as average-level cars (old cars). In future works, 

ways to overcome spectral leakage and a deep analysis of the 

essential features will be valuable. 
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